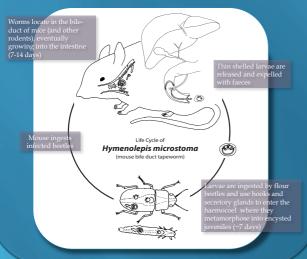


The Hymenolepis genome and transcriptome

Magdalena Zarowiecki^{1,2}, Alejandro Sanchez-Flores¹, Natalia Pouchkina-Stantcheva², Nancy Holroyd¹, Matt Berriman¹ & Peter D. Olson²

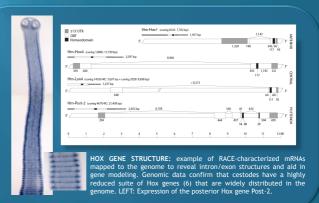

> ¹The Wellcome Trust Sanger Institute, Cambridge, UK ²The Natural History Museum, London, UK

Introduction

In 2009, the Parasite Genomics Group at Wellcome Trust Sanger Institute began characterization of the genome and transcriptome of the model tapeworm *Hymenolepis microstoma* in collaboration with Pete Olson of the Natural History Museum, London.

Why Hymenolepis?

- Hymenolepis species (e.g. H. diminuta, H. nana and H. microstoma) have been used as laboratory models since the 1950s, and thus much of our basic understanding of tapeworm biology stems from work on these species.
- The entire life cycle can be kept in the lab, making them more practical models than groups having medical or veterinary importance, such as Taenia and Echinococcus.
- The highly inbred 'Nottingham' strain is expected to show reduced variability, resulting in fewer assembly problems.



Materials & Methods

Data derive from a laboratory strain of *H. microstoma* (ie. 'Nottingham') maintained *in vivo* at the NHM using outbred conventional mice and flour beetles (*Tribolium confusum*). Specimens were removed from the bile ducts and intestines of mice and genomic DNA extracted from somatic tissues (ie. anterior parts of worm). RNA was extracted from whole adult worms as well as from larvae during mid-metamorphosis in the beetle host. Representing development during both phases of the life cyle, these samples give insights into the transcriptome during both segmentation and larval metamorphosis.

The genome was assembled from 5 full Roche 454 Titanium runs (3 unpaired, 2 paired with ~3 Kbp inserts) and 3 Illumina GAII lanes, with a read-length of 76 bp. Illumina insert sizes for 2 lanes range from 300-400 bp, and for the third ~3000 bp. A *de novo* assembly of the genome was made using the software Newbler 2.3 (for Roche/454) and ABySS 1.2.0 (for Illumina), and contigs then merged using minimus2 from the AMOS Pipeline. The transcriptome was sequenced using separate lanes of Illumina data (ie. adult vs. larva), and mapped to the genome using BWA after screening for contaminants such as host RNA/DNAs. Gene models are currently being constructed using Augustus, SNAP and Jig-saw.

Genome assembly	Solexa	Solexa		All data	
Total length	164.4	54,905	144,216,446	140,918,059	
No. of contigs		477,156		13,772	
N50	9611		68,588 3707	31,535	
No of contigs >N50		4366		1290	
Mean contig length		345		10,232	
Longest contig	1	119,539		189,659	
Transcriptome	ADULT		LARVAE		
Paired-end seq	6.3E+7		4.8E+7		
Reads mapped to genome	4.8E+7	76%	3.7E+7	76%	
Reads paired	3.0E+7	48%	3.2E+7	45%	
Perfect reads mapped	3.9E+7	63%	3.0E+7	63%	

Discussion

After the first year of the project we have generated 42x coverage of the genome and comparisons with similar amounts of data from *Echinococcus* show that the *Hymenolepis* assembly is highly efficient. These data will provide a platform for further research in all areas of tapeworm biology, including development and drug targets.

- A high-quality whole genome-assembly
- Transcriptomic data from multiple life-stages
- + Annotated gene-predictions for a majority of genes, based on transcriptomic data and gene-prediction algorithms.

The latest genome assembly is available from: http://www.sanger.ac.uk/Projects/Pathogens/

All primary data generation and bioinformatic infrastructure sponsored by the Sanger Institute. Additional funding for MZ thanks to a CoSyst grant to PDO, MB \pounds MZ which is a joint UK Research Council initiative. NPS and PDO are supported by a BBSRC grant to PDO.

